Networking theories for understanding and guiding lesson study
Type de référence
Date
2023Langue de la référence
AnglaisRésumé
This special issue demonstrates the richness and fruitfulness of using networking theories in LS. First, at least two of the 13 explored theories, which include two grand theoretical perspectives and 11 intermediate theoretical perspectives, could be networked through coordinating/combining (six papers) and locally integrating (two papers) to serve as a networked theoretical perspective for LS. Second, networking theories could not only strengthen the design of LS, which aims to promote teachers’ professional learning, but also advance the research of LS through which more comprehensive frames are used to deepen understanding of teachers’ learning in LS at both theoretical and empirical levels. It is networking theories that helps to reveal what teachers learned (MKT, KQ . . .) and how they learned (IMTPG, CHAT, CoP . . .) simultaneously in great detail. Third, some of the theories are enriched through the exploration of networking theories at the empirical level. For example, the IMTPG is enriched in Group Domain by combining MKT (da Ponte et al.) and in Domain of Practice by locally integrating CoP (Qi et al.). The papers in this special issue are all related to mathematics teaching and learning. Nevertheless, since many of these theoretical perspectives and models are not specific to mathematics, we expect that networking theories could be adopted to research of LS in other subjects. It is our hope that this special issue serves as a starting point for researchers in the LS field to explore how networking theories contributes to the development of theory and practice of LS internationally.Titre du périodique
International Journal for Lesson and Learning StudiesMaison d’édition
Emerald PublishingPays d'édition
Royaume-Unip-ISSN
2046-8253e-ISSN
2046-8261Evaluation par les pairs (peer reviewing)
ouiVolume / tome
12Fascicule
1Public(s) cible(s)
Chercheursprofessionels du domaine
URL permanente ORFEE
http://hdl.handle.net/20.500.12162/6617Autre(s) URL(s) permanente(s)
https://www.emerald.com/insight/publication/issn/2046-8253/vol/12/iss/1- Tout ORFEE
- Détail référence