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Students with Mathematical Learning Disabilities (MLD) are diagnosed in most cases through 
arithmetic performance tests. The diagnosis identifies them as having severe difficulties in 
mathematics. For the present study, we investigated the algebraic thinking of a 9th grade student with 
a diagnosis of dyscalculia through the generalisation of a geometric pattern. Despite her dyscalculia 
diagnosis, the student was able to solve the proposed problem by developing an arithmetic 
generalisation and different types of algebraic generalisations. The analysis of the interview with the 
student shows that, despite the major arithmetic difficulties identified by the diagnosis, the student 
shows algebraic skills. In addition to showing the skills that students with MLD may have, this result 
highlights the limitations of the diagnostic tests currently used and the need to supplement them in 
order to cover other mathematical areas. 
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Introduction and literature review  
Activities involving algebraic thinking are essential for meaningful mathematical learning. In fact,
they enable the development of fundamental aspects such as analysing relationships between
quantities, modelling, proving, justify, noticing structure and generalisations (Kieran, 2004).
Research in mathematics education has long been interested in defining algebraic thinking. Some of
the literature focuses on the use of literal symbolism, while others focus on the operations involved.
This second approach offers a broad interpretation of algebraic thinking and allows it to be identified
in activities that are not restricted to the use of letters.

Researchers have long wondered about the difference between arithmetic and algebraic thinking,
which are often interpreted as one in continuity with the other. Radford (2018) identifies three
components of algebraic thinking that characterise algebraic thinking:

1. Indeterminate quantities. The mathematical situation that enables algebraic thinking includes
unknown numbers (variables, unknowns, parameters, generalised numbers, etc.).

2. Denotation. The ways of representing these indeterminate quantities and their operations are
culturally and historically constructed. It is also possible to use other types of representations
rather than alphanumeric symbolism, such as natural language, gestures, etc.

3. Analycity. Indeterminate quantities are considered as if they were known numbers or specific
numbers and are operated on. Known and unknown numbers are treated in the same way.

In the last decades, we have seen an increase in the attention of political institutions towards Learning
Disabilities. Indeed, they are now also part of the official documents of various European countries,
which recommend that schools take charge of them: for example, with the 360° Concept (DFJC,
2019) in the canton of Vaud in Switzerland, the context of this paper. In mathematics education, we
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are seeing an increasing interest in students with Mathematical Learning Disabilities (MLD), and this
is also visible from the recent creation of TGW25 Inclusive Mathematics Education – Challenges for 
Students with Special Needs in CERME11 in 2019 (see for example Gregorio, 2022). Learning
Disabilities are traditionally associated with a cognitive dysfunction that leads to severe and persistent
academic difficulties that are not due to inappropriate pedagogy, sociocultural factors, developmental
delay or sensory impairment (APA, 2013). A well-known learning disability is dyslexia, which refers
to difficulties in accurate and fluent word recognition and poor spelling skills. Concerning
mathematics, Learning Disabilities affect number sense, memory for arithmetic facts, accuracy or
fluency in calculation and mathematical thinking generically. Dyscalculia is another term used to
refer to difficulties in processing numerical information, learning arithmetic facts and performing
calculations. In addition, students with MLD often present a deficit in working memory, and in
particular spatial working memory is impaired, both in sequential tasks and in tasks where
visuospatial information had to be maintained simultaneously (Mammarella et al., 2018). Difficulties
in visuospatial working memory can have an impact on mathematical abilities as they affect the
capacity to work on order and sequence.

MLDs are diagnosed through mathematical performance tests. Most of the tests are on basic
arithmetic skills (counting, comparing and estimating collections, transcoding, the four symbolic
operations, etc.) and usually with a procedural vision of arithmetic, with the implicit assumption that
difficulties in any mathematical domain are due to difficulties in arithmetic (Baccaglini–Frank et al.,
2020). This assumption is problematic, because not all difficulties in mathematics are necessarily
related to arithmetic. Moreover, it is possible to have difficulties in arithmetic without having
difficulties in other mathematical domains. The difference between algebra and arithmetic is therefore
particularly relevant when it comes to MLD diagnoses tests, because they have ambitions to test
Learning Disabilities in mathematics but are actually very much related to arithmetic.

In this paper I am therefore interested in two issues. Firstly, I want to study the algebraic thinking of
a student who has been diagnosed with MLD. I make the hypothesis that a diagnosis of MLD does
not necessarily imply that the pupils have difficulties in all mathematical areas and that therefore they
may show mature reasoning in algebra. In addition, I explore some implications that these findings
might have for the tests used for diagnosis.

Theoretical framework and research question 
As mentioned in the previous section, generalisation is a fundamental aspect for algebraic thinking.
Radford (2008, 2010) identifies different types of generalisations in the context of geometric patterns
(such as the one in Figure 1): arithmetic generalisation, factual generalisation, contextual
generalisation, and standard symbolic generalisation. This typology assists the researcher in the
identification of certain processes and should not be interpreted in terms of hierarchical stages of
biological or cognitive development of pupils.

The relationship between the number of squares and the number of straws in the pattern in Figure 1
can be generalised arithmetically. In this case, the relationship between successive terms in a
sequence is grasped, yet a formula for any term is not identified and a direct rule for finding the
number of sides for any figure is not established. For example, to find the number of sides for step
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100, it would be possible to generalise by saying, “you must do 4+3+3+3... etc. and get to 100”. This
is obviously a generalisation, but it is not algebraic because there is no indeterminate involved.
Moreover, it is not analytic because we do not operate on unknown numbers.

     

Figure 1: The mathematical problem, a geometrical pattern 

Factual generalisation is a first type of algebraic generalisation in which the variable comes into play
and one operates on it. At this point, students have grasped the regularity of the pattern and
generalised it to any particular figure. They have at their disposal a formula in act composed by
actions rather than by formal symbols. The concepts of variable and indeterminate are sensed by the
students, but not explicit. For example, one could generalise the pattern in Figure 1 to the case 25 by
saying: “you must do 25+25+25+1”.

The contextual generalisation is another type of algebraic generalisation and concerns a figure that
is not specific. However, the resulting formula is still contextual, related to spatial and temporal
characteristics and based on the personal interpretation of the pattern. For example, for the pattern in
Figure 1 one could say, “the number of the figure for the sides in bottom row and for the sides in top
row, plus the number after the number of the figure for the oblique sides”. The indeterminate aspect
is made explicit and is expressed by the formula “the number of the figure”.

The standard symbolic generalisation allows detaching from the concrete context. For example,
symbols in the formula 3𝑛 + 1 assume a relational meaning in function of other symbols and their
narrative dimension disappears.

Studying the algebraic thinking of pupils with MLD is particularly interesting because there are still
not many studies on this subject as most focus on arithmetic tasks (Baccaglini-Frank et al., 2020). In
addition, their visuospatial memory can be impaired (Mammarella et al., 2018), potentially impacting
the order and sequence aspects of tasks such as the generalisation of algebraic patterns. Given these
characteristics of pupils with MLD, it is pertinent to ask whether or not they perform as well as pupils
without MLD, for whom there is an extensive literature (i.e. Radford, 2008). To study the algebraic
thinking of pupils with MLD, the question driving this paper is: what types of generalisations are 
used by a student with MLD when studying a geometric pattern?

Method  
Context and participant 

The data presented in this paper are part of a more extensive research in terms of pupils involved and
proposed mathematical tasks. Data were collected in the canton of Vaud, in the French-speaking part
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of Switzerland1. The region has seen a growing interest in inclusion in schools in recent years (DFJC,
2019). Despite this growing interest, school organisations are divided into different types of schools
(ordinary and special schools) and school levels, depending on pupils' grades.

In the following pages, I will focus on the case of Ambre, a pupil diagnosed with MLD and identified
as being in severe difficulties in mathematics by her teachers. Ambre is enrolled in 9th grade in an
ordinary school, in the level of students with low grades. She has a diagnosis of dyscalculia and
dyslexia, she has great difficulties in mathematics, and she is excused from German and English
classes in order to lighten her workload. The student is recognised, according to the teacher and the
student herself, as being in great difficulty in mathematics, regardless of the subject. Ambre has not
yet encountered the chapter about algebraic literal calculation in her schooling.

Procedure  

Data were collected through clinical interviews. These are semi-directive and open-ended interviews
between the researcher and the student (Ginsburg, 1981). The interviewee solves the assigned
mathematical task by making explicit the procedure used. The researcher guides the interview by
proposing the task, asking for more detailed explanations where necessary and unblocking the
situation with questions when needed. The goal of the interview is to stimulate the student's responses
in a way that encourages showing mathematical reasoning. The researcher then sought to create the
ideal contextual conditions for this by using the student's claims to allow them to show the full
potential of their reasoning, but without replacing them in finding the final answer.

The interviews were filmed and transcribed. The content of the analysis involved the transcribed
students' interventions and their written productions. These were analysed using Radford's types of
generalisation presented earlier.

Mathematical problem  

The interview was about generalising the pattern in Figure 1, a classical problem, where the squares
in the picture were made up of straws. The instructions for the problem were as follows. Here are the 
first three steps of a sequence of squares. How many straws are needed to form a sequence of 4 
squares? And 5 squares? How many straws are needed to make a sequence of 12 squares? How
many straws are needed to make a sequence of 100 squares? If you knew the number of squares, 
could you still find the number of straws? If so, how?

The task was given in pencil paper, but real straws were proposed to the students in case they had the
need to represent the sequence in a more concrete way.

Results 
During the interview, Ambre proposes a factual generalisation for 4 and 5 squares by identifying the
regularity of the pattern, as we can read in the following excerpt.
Researcher: Okay. So how many straws for 4 squares?

1 Interview excerpts and the text of the mathematical problem have been translated into English for this paper from the
original French version.
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. . .
Ambre: We have 4 straws at the top, then 4 straws at the bottom. Then next, we have in the

intersections, and we have 3 intersections, those, there [pointing to the vertical 
straws in the third picture in Figure 1, but not the first one]. Plus the 2 at the
extremities, so that's plus 2. So, in total, for everything, there, it's equal to 13, so it's
13 straws [she writes the calculation in Figure 2, top left].

Researcher: Perfect. Very good. What about the 5 squares?
Ambre: Ah, for 5 squares we do the same thing, but for the 5. So, there will be 5 on top, 4

in the middle and always 2 on the side. So, it will be 16 [she writes the calculation 
in Figure 2, bottom left].

The formula in act that the student proposes is a generalisation that she would be able to apply to any
particular number. In fact, for 5 squares she says, “we do the same thing”, and afterwards she
reproposes the same strategy for 100 squares (Figure 2, in the middle). Ambre's procedure is
noteworthy because, for such small numbers of squares, students typically draw and count (Radford,
2010). Ambre, on the other hand, despite –or thanks to– her difficulties in mathematics (or
arithmetic?), relies on the structure of the pattern, highlighting its regularity.

Figure 2: Ambre’s algebraic generalisations 

The factual formula chosen by Ambre gives importance to the spatial arrangement of numbers (Figure
2, left and centre): the same number repeated twice in a column corresponds to the straws “at the top”
and “at the bottom”, after that there is the number of straws in the “intersections” and finally there is
always 2 that corresponds to the straws at the two extremities. The proposed formula encloses the
spatial arrangement of the pattern and the student's temporal interpretation of it. The spatial
arrangement of the formula does not include the operator signs, and the various numerical terms are
simply juxtaposed, leaving the summation operation implicit.

When asked to find the number of straws of a non-particular number of squares, Ambre firstly
generalises arithmetically the pattern. In the following excerpt, the student highlights the recursive
relationship that links each stage and the next one: by adding a square, three straws are added.
Ambre: . . . if. . .we are told for example 2 squares of straws, we just have to add then 3 so

that it makes 2 squares. . . Then it's kind of like this, you can do it over and over
again. But once you know that with 1 square, there are 4, but with 2 squares, there
are [she counts the straws]... There are 7. Well, we can repeat that every time.

The previous relationship is extendable to each stage of the pattern because, as Ambre says, “we can
repeat that every time”. She identifies the regularity of the pattern and generalises it. In this
generalisation, however, she does not offer a compact formula for immediately finding the number
of straws needed for any number of squares. But, after some researcher’s interventions and questions,
in addition to an arithmetic view of the pattern, Ambre also proposes an algebraic generalisation that
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has some characteristics of a contextual generalisation and some of the symbolic (Figure 2, right).
This is evident in the following excerpt.
Researcher: How would you do, if you have any number of squares, to figure out how many

straws?
. . .
Ambre: If we take the number in question... I don't know, I just represent the number with

a circle.
Researcher: That's fine.
Ambre: We'll just have to make this circle in question time 2, equal to any number since it's

a number we don't know [she writes “Ox2=ooo”, as shown in Figure 2, right], but
then, since there are all those that are on the bottom... Let's say that if there is…
This number is the number of times that there is 1 square with a certain number of
straws, that means... Anyway, we have to do, since it has this number of straws
which will be 2 times in the calculation, it will be 2 times anyway [she writes “O” 
and “O” in the column, as shown in Figure 2, right], otherwise...

Researcher: Yes.
Ambre: And there will always be this number minus 1 in the rest of the calculation. Plus, if

we always assume that it's squares, plus 2 afterwards [she adds “O-1+2” at her 
formula, as shown in Figure 2, right].

Researcher: Mh mh.
Ambre: Which will always solve to ta-ta-ta... I mean, these [writing “=ooo”, as shown in 

Figure 2, right]…
Researcher: What is your ta-ta-ta?
Ambre: It's a number. A final number. But in itself, the aim of the calculation is to take 2

times the number we have...
Researcher: Yes...
Ambre: Minus that number... Minus 1 of that number, plus what we found there [by circling 

the two “O O” in the column], plus then the 2 that will come afterwards. And we're
going to find the final number [by indicating “ooo”].

The generalisation proposed in the previous excerpt loses the reference to the particular number and
can be implemented for any number. It straddles the contextual and the symbolic generalisation. The
student in fact, after making the variable explicit by calling it “the number in question”, represents it
by introducing the symbol of a circle. It is a compact symbol here that has the same characteristics as
algebraic alphanumeric symbolism, which the student has not yet encountered in her schooling. On
this variable-circle, the student operates nimbly. At first, as we can see in Figure 2 on the right, she
wants to multiply the variable by two. However, unable to complete the formula in such a
decontextualised manner, the student abandons this attempt and returns to referring to the spatial
structure of the pattern, the same structure she had already highlighted in her factual formula (Figure
2 left). So, although the variable is represented by a compact symbol, the generalisation proposed by
the student still refers to the spatiotemporal context. In fact, she places the circle variable twice in a
column, representing the number of straws at the top and the number of straws at the bottom of the
pattern. Then she places the variable minus one for the straws at the “intersection” and she adds 2 for
the two straws closing the pattern. The formula is in this aspect contextual, because it refers to the
spatial arrangement of the pattern. In the student's words we clearly read these references, spatial such
as “those on the bottom” or “here”, and temporal such as “then” or “afterwards”. Furthermore, the
different parts of the formula are only partially joined together by operator symbols: when there is a
number the operator is written (“-1” and “+2” in Figure 2, right) but variables-circles are not preceded
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by an operator, they are simply juxtaposed. The operators are instead verbalised by Ambre, who
repeatedly expresses that the operation to be done is “plus”.

Despite the contextual characteristics, the generalisation produced by the student fits any number and
has the ambition to detach itself from the context.

Discussion 
In the previous pages, we observed the use of algebraic thinking by a student diagnosed with
dyscalculia and dyslexia. Despite the severe difficulties in mathematics identified by the diagnoses,
the student was able to show, during the interview, that she was able to resort to algebraic thinking
and practised various types of generalisations, including very fine ones. The student generalised
arithmetically, but also algebraically: she developed generalisations with factual, contextual and
standard symbolic characteristics. This shows the possible richness of the algebraic thinking of
students with MLD, making an original contribution to the literature that focuses in most cases on
what students cannot do rather than what they can do. This result is in line with research which focuses
on other aspects of mathematical reasoning of pupils with MLD (i.e. proof, Gregorio, 2022).

Moreover, this case study offers an example of a pupil with definite difficulties in arithmetic who
nevertheless shows a good command of the generalisation of geometric algebraic patterns. The
identification of the structure of the situation and its generalisation were also preferred at the expense
of mere counting or arithmetic generalisation. The discrepancy between algebraic and arithmetic
skills shows that one is neither necessary nor sufficient for the other (neither arithmetic for algebra
nor vice versa), constituting a further confirmation of the dividing line between the two disciplines
(Radford, 2018; Kieran, 2004).

This result opens up access to the potential for developing algebraic thinking even for these students
in great difficulty, for whom there are often minimal learning objectives. Indeed, solving problems
similar to the one described in this article is not often offered to students with mathematical
difficulties (Roiné & Barallobres, 2018). In general, for this type of student there is a preference for
operative tasks where a lot of attention is given to the result and the product, to the detriment of the
process and the structure of the mathematical situation.

This result also calls into question the types of tests currently used to identify MLD. The strong focus
on basic arithmetic skills does not allow for the moment to differentiate between different types of
difficulties in mathematics, identifying all and only those students with MLD as having arithmetic-
calculator difficulties. There is a need to include other item types in the tests (Baccaglini-Frank et al.,
2020) in order to offer a truly comprehensive screening of mathematical skills and difficulties, so as
to cover the algebraic area, but also, for example, the spatial or geometric area.

In addition, the interview shown in the previous paragraphs highlights the fact that students diagnosed
with the current tests have difficulties in some areas of mathematics, the ones tested for the diagnosis,
and may show skills equal to their peers in other areas. This emphasises the importance of
categorising students not only through their difficulties, but also through their competences, in order
to offer them a learning framework best suited to them. This result is consistent with some recent
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research, which is interested in the creation of diagnostic tests to differentiate between different
profiles of students with MLD (Baccaglini-Frank et al., 2020).
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