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Abstract. In this research, we are interested in the knowledge of pri-
mary and secondary teachers to teach informatics. Using pedagogical
resources produced by them as a trace of their enacted Pedagogical Con-
tent Knowledge (ePCK), we perform Textual Data Analysis and Clus-
tering to discover the topics they write about. Focusing on resources
in educational robotics, we show that lexicon used by teachers is dif-
ferent depending on the robot they use. Reinert’s clustering associates
each robot with a separate cluster and a specific vocabulary. Multiple
Correspondence Analysis (MCA) shows an opposition between lexicon
found in resources using event-driven robots (Thymio and Ozobot) and
in resources using sequential robots (Beebot and Bluebot). Event-driven
robots tend to be more related with events and behavior notions, as se-
quential robots tend to be more related with first manipulations of an
object and programming notions.
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1 Introduction & Context

This research constitutes the third part of a research project on teachers’ PCK
in informatics that has been conducted between 2021 and 2023. In the first
article [4], we investigated educational resources produced by pre-service primary
teachers to teach programming in France and Switzerland. The results showed
that the progression of activities and the choice of teaching methods were not
completely thought through by future teachers.

In the second article [13], we focused on a subset of our initial educational
resources including robots. We added to it a set of online resources on the same
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topic from more experienced teachers. We wondered whether the computing
notions involved in the resources were the same in the case of event-driven and
sequential robots. Having extracted from the corpus the lexicon that we identified
as “Computer Science (CS)”, the results showed that it was significantly different
according to the type of robot and the experience of the teacher.

In this third step, we want to explore further the potential of Textual Data
Analysis techniques in the field of computing education. Unlike our previous
research in which we focused on a portion of the lexicon that we manually
extracted from the corpus, what would happen if we considered the entire lexicon
and base our analyses on it? We propose to perform a new investigation on
the same corpus of educational robotics resources, but this time using another
method of Textual Data Analysis: Reinert’s clustering. Reinert’s clustering is an
unsupervised divisive clustering technique [14] that, when applied to a corpus of
texts, is able to extract some of their main topics, giving an idea of the mental
universe embraced by their authors.

Our research questions are

RQ1 What are the main themes that emerge from the textual analysis of educa-
tional resources for CS?

RQ2 What kind of relation can be established between the lexicon and the type of
robot used in the resources?

RQ3 Based on the analysis of the lexicon, what other relations can be seen between
the clusters, grade levels, programming paradigms and teachers’ expertise?

2 Related Work

Several models have been proposed to represent the knowledge of teachers.
Among them, Pedagogical Content Knowledge (PCK) presented by Shulman
in 1986, is one of the most fruitful. Built in reaction to a context in the US in
which specific knowledge of the subject matter seemed to be left apart in teacher
education, PCK is defined by Shulman as “a pedagogical knowledge that goes
beyond knowledge of subject matter per se to the dimension of subject matter
knowledge for teaching” [16, p. 9].

The original model was enriched by Magnusson, Krajcik and Borko for the
teaching of science [9] who considered 5 components of PCK: orientations to-
ward science teaching, knowledge of the curriculum, knowledge of students’ un-
derstanding, knowledge of assessment and knowledge of instructional strategies.

A community of researchers in science education was built around the PCK
model and proposed in a second iteration the Refined Consensus Model (RCM)
of PCK in 2017 [2], which presents three different domains of PCK: collective
PCK (cPCK), personal PCK (pPCK) and enacted PCK (ePCK).

Enacted PCK (ePCK) is the teacher’s knowledge in action, “the specific
knowledge and skills utilized by an individual teacher in a particular setting,
with a particular student or group of students, with a goal for those students
to learn a particular concept, collection of concepts, or a particular aspect of
the discipline” [2, pp. 83-84]. It is not restricted to the moment of teaching in
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class with the students and also includes the planning and reflecting on the
instruction by the teacher. According to Henze and Barendsen [6], ePCK is the
part of the personal PCK that is active at a certain moment during teaching. Its
dynamic aspect makes it not so easy to elicit and observe. Researchers interested
in studying the enacted PCK of teachers can rely on classroom observations, but
can also consider a pedagogical resource prepared by a teacher as a trace of its
enacted PCK. This is the choice we made in studying pedagogical resources of
school teachers who teach programming, they constitute a trace of their planning
activity, a part of their ePCK.

Despite the fact that Textual Data Analysis is not a mainstream method
in the field of education [5], we could identify some research where computa-
tional methods were applied to text in the context of education. Some of them
have methodological aims and explicitly attempt to show that it’s possible to
use computational techniques to analyze textual data in education [1, 15]. Some
research use written data, for example open-ended questions in questionnaires
to teachers or students [11, 18], curricula [11] or teacher resources [1]. Other re-
search use transcription of oral data, for example interviews [15] or discourse in
class [8, 10].

Few researchers employ Reinert’s clustering in the context of education [5],
but there exists a good example related to science education where Reinert’s
clustering is used to analyze teachers’ representations of the investigation pro-
cedure, confronting clustering of an open-ended question in a teachers’ survey
and clustering of the content of the curriculum in science [11].

In the field of computing education, we found even less research using Textual
Data Analysis, but we can mention one study using topic modeling to analyze
students reviews on computer science MOOCs [3] and another study using Clus-
tering technique of CS1 students’ programming codes to identify a group of
students with difficulties [17].

3 Data Collection & Methodology

Data collected for our research has two origins: the first part consists of 59 edu-
cational resources produced by pre-service teachers during workshops about the
teaching of informatics in France and Switzerland. Those resources, dedicated
to activities in educational robotics, were part of a more important corpus com-
posed during the first phase of our research. More details are given about them
in [4]. The second part of the data consists of 61 online resources on the same
topic from more experienced teachers.

Our resources consist of pedagogical scenarios serving as preparation for a
school lesson with one or more activities: teachers describe the learning objec-
tives of the lesson, the roles of teachers and pupils, a schedule and the material
needed. Some resources also contain feedback about the difficulties encountered,
either anticipated or experienced. For the pre-service teachers, the resources pro-
duced were used to validate one of their academic courses and their form differed
depending on their university: a written scenario in a PDF document of 2 to 15
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pages for some of them; a PowerPoint presentation explaining the scenario in
the context of an oral exam; a video presenting the scenario in the same context,
from which we extracted and transcribed the audio.

In order to enrich our corpus, we decided to augment it with 61 pedagogical
scenarios available online. We followed a formalized process to use a search en-
gine with keywords that would let us discover different resources for each robot,
filtered the first results to download only resources that we could clearly iden-
tify as pedagogical scenarios. The documents were written documents in PDF
between 4 and 20 pages. We have less information about the authors of these
online documents than we have for our pre-service teachers, but we categorize
them as “experienced” because we could see going through the documents that
they were often well elaborated and that some of them were clearly affiliated to
an educational academy.

We are conscious that the format of our resources is quite different depending
on the context and it can be considered as a limitation of our research. But at
the same time, the main goal of the documents was the same: presenting the
pedagogical scenario of a school activity with robots. They are all textual and
contain a lexicon that we can valuably analyze with Textual Data Analysis
methods.

Finally, our corpus is composed of a total of 120 educational resources in
French describing activities in educational robotics created either by novices or
by experienced teachers.
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Figure 1 shows the number of resources per robot in our corpus and their
repartition between event-based and sequential. Event-based robots have sensors
and actuators, they are mostly programmed in an event-based mode: various
events are associated with specific behaviors; sequential robots do not have in-
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formation from their environment and are programmed in a sequential mode: a
sequence of instructions that are executed from a beginning to an end. Figure 2
presents the repartition of resources by robots and by grade level. We see that
there are very few resources related to secondary education.

Processing of the data, pretreatment and analyses are performed in R [12].
The first step consists of extracting all the text from the resources. Having clas-
sified them according to categorical variables like the type of robot (sequential
or event-driven), teachers’ experience (novices or experienced), the grade levels
and so on, we add those as metadata about the documents.

Before pretreatment, the whole corpus is composed of 248,813 occurrences
and a vocabulary of 54,819 different words.

In order to perform Reinert’s clustering, the corpus is split into segments of
around 40 words, trying to maintain together words in complete sentences. We
obtain 4,784 segments of text.

Then, we perform the lemmatization of the text, an operation that replaces
every inflected form of a word into its unique normalized form. In the later
process, forms that appear too few times in the corpus will be ignored in the
analysis. Without lemmatization there is the risk to lose certain words where
every inflected form would be counted as a different word, which is especially true
for verbs in French. We use spacyr, a wrapper for spaCy Python’s library in
R, with fr_dep_news_trf, a French transformer pipeline as a model, to process
it.

Tokenization is then performed, which means the transformation of continu-
ous text of the segments into individual tokens or words. The whole text is split
into single tokens, with the space character as a natural separator. Punctuation,
symbols and URLs are removed. We remove stopwords so that we can focus on
notions which appear mostly through substantives or verbs. We use a custom
list of 449 stopwords, as some of the common lists provided in R packages were
rather too short (157 words for the standard) or too long (687 words for the list
called stopwords-iso).

Finally, we compose an exclusion list along the classification process to re-
move words that are appearing in clusters and that make no sense for the analysis
(for example abbreviations for school years, name of institutions or schools). It
is composed of 116 words.

At the end of this pretreatment process, we obtain a matrix called document-
feature matrix crossing 2,599 words and 4,784 segments which serves as a basis
for the Reinert’s clustering.

Reinert’s clustering is an unsupervised divisive clustering that gets applied to
the document-feature matrix. It means that it performs a bipartition of the seg-
ments iteratively. Segments are divided into two groups with the aim of building
clusters that are as homogeneous as possible, keeping together the most similar
segments, and as heterogeneous as possible between them, with groups of seg-
ments as different as possible. Similarity is established through the presence of
similar words in the segments using a Pearson’s chi-squared test to compute the
distance between the two clusters.
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Reinert’s method proposes a double clustering that crosses the results be-
tween two simple clustering performed with different minimal sizes of segments
to obtain more robust classes. Trying various settings, it is up to the researcher
to determine the number of clusters which seems the most relevant in terms of
interpretation.

Having compared different analyzes, we decide to perform a double Rein-
ert’s clustering with a min_segment_size = 10 for the first clustering and a
min_segment_size = 15 for the second. We keep eleven clusters. As is the case
with double classification, no dendrogram and no visible hierarchy between the
clusters is produced. We obtain a graph of the eleven clusters with a list of words
that are strongly associated with them.

4 Results & Discussion

4.1 Results From Reinert’s Clustering

A plot of the classification with the 11 clusters is displayed in Figure 3, showing
for each cluster the 30 tokens most significantly associated with. The number
of unclassified segments is 821. It’s an important number compared with the
total of 4,784 segments (around 17%), but even though we decide not to force
the classification of the remaining segments in the existing clusters, as this is
reputed to potentially alter the homogeneity of the clusters.

Here is a list of the main clusters, with a title and some of the words that
appear as strongly associated to — or overrepresented in — each cluster. An
interface in the rainette package lets us access the segments containing the
words of a cluster easily, giving the necessary context to let us interpret better
its meaning. The title is given according to our interpretation. Clusters 2, 3, 4
and 9 are small clusters with less than 200 segments and can be ignored.

– Cluster 1 — Goals: domain, grade, language, competence, objective, peda-
gogical, learning (1,029 segments)

– Cluster 5 — Movement: erase, move forward, memory, left, right, turn, ro-
tate, beebot (203 segments)

– Cluster 6 — Path: path, route, cover, draw, time (230 segments)
– Cluster 7 — Sharing: institutionalization, pupil, groups, collective, sharing

(531 segments)
– Cluster 8 — Programming: instruction, square, start, program, programming,

check, bug, bluebot (537 segments)
– Cluster 10 — Events: sensor, detect, behavior, object, event, explore, thymio

(543 segments)
– Cluster 11 — Dancing: movements, dance, tablet, code, app, ozobot (515

segments)

4.2 Results From Multiple Correspondence Analysis

Once Reinert’s clustering has been performed, we execute a Multiple Corre-
spondence Analysis (MCA) to explore the relations between our clusters and
the different variables associated to the pedagogical resources in our corpus.



Textual Data Analysis of educational robotics resources 7

0

250

500

750

1000

1 2 3 4 5 6 7 8 9 1011NA
Group

n

Clusters size
(NA = 821)

domaine
cycle
langage
compétence
spatial
espace
objectif
représentation
oral
marqueur
démarche
apprentissage
scientifique
pédagogique

faire

communication
utiliser
science
repère
école
mobiliser
numérique
socle
outil
technique
comprendre
mathématique
viser
français
devoir

chi2

Cl. 1
n = 1029

tapis
cm
grillager
image

asseoir
région

lettre
poisson
album
transparent
comporter
petit
ville
animal
costume
sort

nord
sac

coccinelle
chiffre
case
porter
poule
plénum
grille
france
ferme
contexte
source
costumer

chi2

Cl. 2
n = 172

ruban
adhésif
ciseau
colle
crayon
kapla
lego
carton
plot
choix
imprimer
matériel

influencer
trio

défi
gros
document

duo
quille

stylo
pièce
règle
élève
feutre
fiche
gris
niveau
numéro
renverse
3d

chi2

Cl. 3
n = 13

pochette
direction
nappe
bâtonnet
carte
appui
prérequis
envisager
numérique86
recontextualisation
enchaîner
case
répétition
bande
boucle
quadriller

bluebot...
factice

changement
arrivée
test
grand
quadrillage
plastique
variable
beebot
débrancher
instruction
piste
route

chi2

Cl. 4
n = 85

effacer
avancer
mémoire
gauche
droite
tourner
pivote
touche
pivoter
reculer
droit
tromper
ruche
beebot
rituel
remettre
étiquette
go
oublier
direction
allée
tourne
rotation
pivot
épaule
case
falloir
appuyer
quart
thymio

chi2

Cl. 5
n = 203

nécessaire
chemin
parcours
parcourir
chronométrer
dessiner
tunnel
mettre
disposition
dessine
place
vérifier
correspondre
autocollant
temps
tracer
modifier
noter
défi
variable
dispositif
épais
camarade
inventer
feuille
devoir
supplémentaire
pouvoir
tester
réaliser

chi2

Cl. 6
n = 230

mise
commun
élève
fiche
collectif
enseignant
min
groupe
institutionnalisation
demande
turn
compléter
colonne
straight
différent
activité
séance
affiche
réponse
rappeler
découverte
hypothèse
intérieur
présentation
pe

droite
gauche

phase

déplacement
recherche

chi2

Cl. 7
n = 531

case
instruction
cible
arrivée
élève
carte
parcours
programmer
bluebot
atteindre
programme
devoir
interdire
départ
erreur

thymio

manquante
déplacement
point
étape
trajet
trésor
barre
vérifier
difficulté
multiplicatif
économe
économique
arriver
quadrillage

chi2

Cl. 8
n = 537

min
fleur
aller
remobilisation
entraînement
consigne
déroule
fromage
binôme
étiquette
collectif
précédent
etayage
colby
manger
imiter
groupe
souris
enseignant
remarquer
rôle
ruche
abeille
beebot
diriger
motricité
avancer
réponse
mutualisation
rappel

chi2

Cl. 9
n = 105

thymio
détecte
capteur
comportement
tourne
lorsqu
allume
objet
bleu
jaune
recule
éteindre
vert
violet
rouge
central
appuyer
clair
détecter
allumer
bouton
événement
bruit
foncé
activer
explorateur
peureux
mode
devant
amical

chi2

Cl. 10
n = 543

ozobot
tablette
danse
mouvement
cliquer
pouvoir
dance
feuillet
charger
forward
code
carré
application
app
luminosité
écran
ozoblockly
timeline
statique
calibrer
cours
possibilité
ios
éditeur
bloc
clignotant
commencer

élève

choisir
retourner

chi2

Cl. 11
n = 515

Fig. 3. Eleven clusters produced by Reinert’s clustering. Lexicon displayed in French.
Image produced in R with rainette package.

A contingency table is constituted with eight categorical variables in columns
and the 4,784 segments of texts as individuals in rows. The categorical variables
associated with the segments are: cluster in which the segment is classified,
programming paradigm of robots, name of robots, level of expertise of teachers
and four grade levels of pupils concerned by the activities (early childhood, lower
primary, upper primary and secondary). As our resources sometimes cover more
than one grade level, we had to define grade levels as four separate variables.
To gain in readability and avoid unnecessary information, segments concerning
robots that rarely appear in our corpus are removed. Segments classified in the
small clusters 2, 3, 4 and 9 are also removed. We end with a contingency table
of 4,216 rows and 8 columns.

The result of MCA can be seen in Figure 4 for axes 1 and 2. Fifteen factors
or axes are produced. First axis retains 22% of inertia and second axis 10.3%.
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4.3 Discussion

Looking at the results from Reinert’s clustering, we observe that out of the
seven main clusters created, five clusters are oriented toward CS content for
primary and secondary (5, 6, 8, 10 and 11) and contain lexicon about movements
on a grid, following paths, programming, events and machine; one cluster is
related to general goals of CS teaching (1) and one is oriented toward pedagogical
practices (7), with lexicon that has to do with collaborative learning and sharing
knowledge with the whole class.

This let us answer RQ1: What are the main themes that emerge from the
textual analysis of educational resources for CS? Performing clustering of our
corpus, we can extract seven main clusters or topics. According to the PCK
model of Magnusson, five clusters (5, 6, 8, 10 and 11) are related to knowledge
of the curriculum, one (1) is related to orientations toward CS teaching and one
(7) is related to knowledge of instructional strategies.

We also have elements to answer RQ2, What kind of relation can be estab-
lished between the lexicon and the type of robot used in educational resources for
CS? We were able to identify the lexicon related to each of the robot present
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in our corpus: four clusters are significantly linked to one of the robots, since
they contain the name of the robot among their overrepresented words. Cluster
5 — Manipulation is related to Beebot and contains words having to do with the
movement and first manipulation of an object, which could come close to direct
manipulation or direct control according to Kalaš [7]; cluster 8 — Programming
is connected with Bluebot, with words rather related to programming notions
and activities described in a way that could point to a computational control of
an object [7], so in some way a more advanced phase in the process of learning
CS compared to cluster 5; cluster 10 — Events is associated with Thymio and
contains words rather related to machines, events and behavior; and finally clus-
ter 11 — Dancing is associated with Ozobot, with words rather related to the
idea of a dance. As vocabulary conveys ideas and notions, then our analysis says
something about the notions used by the authors of our resources in relation
with each robot.

Maybe these associations between robots and topics can appear as trivial,
especially for the people who have some experience with them. But we think
that it’s interesting to consider that this classification did not emerge from a
pre-established conceptual framework that we would have applied to the corpus;
rather it emerged completely inductively from the data itself, just from a simple
Textual Data Analysis where we count words.

Further on, this technique has revealed a difference between Beebot and
Bluebot that we would not have thought about. Those robots are very similar in
terms of affordance (Bluebot seems to be a kind of updated version of Beebot).
However, in our resources, we see that the vocabulary associated with the two
robots is somehow different, which shows that teachers connected different no-
tions to the activities they presented for Beebot and Bluebot. Segments of text
related to Beebot describe rather the first manipulations of a robot and those
related to Bluebot a more advanced level of programming.

Then, MCA on Figure 4 offers an interesting view on our data as it rep-
resents the attractions and oppositions between our variables: clusters, robots,
programming paradigms, teachers’ expertise and grade levels. The first observa-
tion we make is the proximity between the four clusters and the four robots to
which they were associated through Reinert’s clustering: cluster 10 is close to
Thymio, cluster 5 is close to Beebot, cluster 11 is in the vicinity of Ozobot and
cluster 8 is not far from Bluebot. We see it as a confirmation that there exists an
association between these four clusters, the notions they convey, and the robots
to which they are associated.

To answer RQ3, Based on the analysis of the lexicon, what other relations can
be seen between the clusters, grade levels, programming paradigms and teachers’
expertise?, we can interpret the meaning of the axes of the MCA. We see on the
first axis an opposition between event-driven robots on the left (Thymio, Ozobot)
and sequential robots on the right (Beebot, Bluebot). This is consistent with the
results that we had in our previous research and it shows that, considering the
entire lexicon of our resources, there is an opposition in terms of vocabulary
used by teachers between resources with activities on event-based robots and
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sequential robots. The second axis is a bit more difficult to interpret, as it opposes
on one side Thymio, its cluster 10, secondary, Beebot and early childhood to
Ozobot, its cluster 11, lower primary, Bluebot and its cluster 8. So there seems
to be an opposition between resources for secondary or early childhood (Thymio
could be for both, Beebot certainly for early childhood) and resources for primary
(Ozobot and Bluebot).

It’s interesting to note that teachers’ expertise doesn’t stand out in the MCA,
as its values are situated close to the center of the plan. As we tend to consider
the PCK of novices to be quite different from the PCK of more experienced
teachers [9], it’s a bit surprising to see that it’s not a factor of differentiation in
our corpus. We also note that the clusters not clearly associated with a robot
(1, 6 and 7) do not play a distinctive role in the MCA.

To conclude this discussion, we think that applying computational methods
to the analysis of textual data in the field of CS education is a valuable ap-
proach, because it lets us go through an important quantity of texts that would
be time consuming to manage manually. Reinert’s clustering helps us under-
stand, through the clusters it produces, what topics are constituting the mental
universe of teachers. It is inductive and these topics are extracted from the data
itself, without having a predefined model for the interpretation. Associated with
Multiple Correspondence Analysis, it gives the possibility to interpret the rela-
tion between specific variables on the lexicon and the clusters produced.

The knowledge of teachers is not an easy thing to observe: as we cannot reach
it directly, we can only observe its manifestation in certain contexts or objects.
Pedagogical resources produced by teachers are one of them. They constitute a
trace of their planning activity and, as such, of their enacted PCK. Performing
a textual analysis of the content of such resources gives access to the individual
words that make them up. As knowledge is related to notions, the words that
appear through textual analysis of resources say something about the knowledge
of their authors.

5 Conclusion

In this research, we apply Reinert’s clustering and Multiple Correspondence
Analysis (MCA) to the text of pedagogical resources in the field of educa-
tional robotics considered as traces of the enacted PCK of teachers. Through
the analysis of the resulting clusters and the words significantly related to them,
we are able to show the main topics that teachers write about when they create
resources. Here is the way we can answer our three research questions.

For RQ1 about the main themes that emerge from the textual analysis of our
educational resources, Reinert’s clustering creates seven main clusters represent-
ing five topics that we would classify as knowledge of the curriculum according
to Magnusson’s model of PCK, one topic related with orientations toward CS
teaching and one topic that would be part of the knowledge of instructional
strategies.
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Regarding RQ2 about the kind of relation that can be established between
the lexicon and the type of robot used in the resources, Reinert’s clustering
and MCA let us characterize it and say that Beebot is associated with the first
manipulation of an object. Bluebot is associated with programming. Thymio is
associated with events and behavior. Ozobot is associated with a dance.

Concerning RQ3 about the other relations that can be seen between the
clusters, grade levels, programming paradigms and teachers’ expertise, MCA
shows an opposition between event-driven and sequential robots.

As a limitation for our research, we only investigated one domain of PCK:
enacted PCK, and only through the analysis of the trace of teachers’ planning
activity. For a broader view on teachers’ PCK, it would be interesting to in-
vestigate the whole pedagogical cycle (planning – enactment – reflection) and
the relations that can appear between personal PCK (pPCK) and enacted PCK
(ePCK) in these contexts [6].

For this reason, we wish to extend our research, using the methods of Textual
Data Analysis, to other kinds of context as teachers’ interviews and classroom
transcripts.
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