
Design and Analysis of a Disciplinary Computer
Science Course for Pre-Service Primary Teachers

Jean-Philippe Pellet[0000−0001−7559−397X],
Gabriel Parriaux[0000−0002−8921−5459], and

Morgane Chevalier[0000−0002−9115−1992]

University of Teacher Education, Lausanne, Switzerland
{jean-philippe.pellet,gabriel.parriaux,morgane.chevalier}@hepl.ch

Abstract. According to new curricula being introduced in Switzerland,
primary teachers have to teach concepts related to computer science (CS),
but most of them have never been through a CS course themselves. At
our university of teacher education, we have introduced a new disciplinary
CS course for pre-service teachers, aiming to provide them with basic CS
foundations to better grasp, contextualize, and explain the CS topics they
will bring to their classrooms. This “experience report” paper describes the
structure and design choices of the new disciplinary course. We propose
a thematic split of the relevant topics to discuss and highlight strategies
to make the course relevant for our audience. The declared and effective
learning outcomes are then analyzed, topic by topic, through crossing
survey responses and exam data. We also use survey data from a year later,
polling the same participants again for relevance of their learnings in the
disciplinary course after being in classrooms and conducting activities in
CS. Through this, success points and improvement areas of the new course
as well as changes to be made for the next occurrences are identified.

Keywords: teacher education · computer science education · disciplinary
course

1 Introduction & Context

In the French-speaking part of Switzerland, the K–12 curriculum for digital
education was updated in 2021. Next to the already existing axes “media” and
“ICT”, a new “computer science” axis (CS) was introduced. The new curriculum
was presented with the main objective of developing so-called digital citizenship
and digital culture of pupils. Prior to this reform, political changes had brought
the topic of digital education in general—and CS in particular—in the spotlight.
There seemed to be a general preoccupation in the economic, scientific, and
political spheres, relayed by the media, that children in our country would not
receive sufficient education in the digital domain. In canton Vaud (one of the
French-speaking Swiss canton), digital education was elected as one of the main
projects of the government and an ambitious pilot project was launched to
introduce the new curriculum of digital education and a teaching of CS in eleven
schools starting from primary level [8].



Our university of teacher education has thus had to adapt its own curriculum
to give primary pre-service teachers (hereafter referred to as “students”) the
competencies needed to teach the content mentioned in the new school curriculum,
in particular CS. As those students had never had the opportunity to study CS
in their school career, most of them needed education not only on the didactical
side of CS, but first and foremost on its disciplinary aspects. Hence, a special
course has been set up in our university of teacher education, focusing especially
on disciplinary content of CS. Participation is optional, but all students have
to go through the assessment at the end of the course. It is followed a semester
later by a didactical course (not further discussed here).

In our educational system, universities of teacher education rarely provide
disciplinary courses to pre-service teachers. For most of primary school disciplines,
students’ knowledge acquired during past school years is sufficient to follow the
linked didactics courses (or else they join a regular university to study disciplinary
content). Because of its novelty, and also to better understand what happened
with teachers’ knowledge in CS, we framed this new disciplinary teaching with
a research setup capable of providing us with the information necessary for its
regulation. This paper presents our setup and our main results.

Our main research questions are:

RQ1: How did students view CS before the course and has this view evolved?
RQ2: How did students self-assess their mastery of various subfields of CS before

and after the course, and how accurate is this self-assessment?
RQ3: A year later, after trying out CS activities in the classroom, how did student

retrospectively view this disciplinary new course?

This paper has the following structure: in Section 2, we mention analyses of
similar initiatives or approaches to CS education of future teachers. In Section 3,
we detail the structure of our new course and justify the design decisions. We
talk about the source of the data we collected to answer our research questions
in Section 4 and analyze it in Section 5. We conclude finally in Section 6.

2 Related Work

CS is relatively recent compared to other sciences, and this is even more true
for its teaching. Only recently did it enter compulsory-school curricula in several
countries (e.g., New Zealand, 2011 [2]; Estonia, 2012 [16], the U.K., 2014 [15];
etc.). Most CS core knowledge is as new for the students as for their teachers.
Despite this, teachers must be able to carry out a didactic transposition [4]. On
the one hand, this professional gesture implies acquiring knowledge in CS (first
level of transposition) and, on the other hand, reflecting/planning/proceeding to
the transmission of this knowledge to their students (second level of transposition)
[4]. In this study, we are interested in this first level of transposition on the part
of the pre-service teachers and, as such, many researches have looked into the
CS conception among teachers. For instance, Funke et al. [10] interviewed six
primary-school teachers on their opinions towards CS courses at primary schools.

2



Results unsurprisingly showed that teachers need to be trained to access the
core CS concepts. This kind of need has also been reported in another similar
study [13], in which educators could improve upon teachers’ misconception about
CS in only three training days. Besides, more and more recommendations to
decision-makers in education systems encourage pre-service teachers to take CS
courses as part of their teaching degree programs [5] to meet minimum content
and knowledge requirements.

Moreover, a survey [7] among 116 secondary-school CS teachers about the
integration of CS in primary education showed that essential topics for primary
school should be introduced into primary-teacher training to ensure that they do
not pass on their misconceptions to students. In this spirit, Repenning et al. [14]
designed and experimented with a core CS course among pre-service primary
teachers (n = 600). Results showed that teaching a mandatory CS class for
pre-service teachers helps change the representations of these actors (particularly
women) regarding CS and digital technologies. Nevertheless, results still reported
a lack of confidence in implementing CS concepts in the classroom.

Another study [17] investigated the lack of confidence of in-service K–12
teachers concerning their self-efficacy in assessing Digital Technologies against
the Australian Teacher Professional Standards and various assessment prac-
tices. Teachers reported that they need time and support to develop assessment
strategies for this new area.

This raises the question of the perceived usefulness of CS knowledge to primary
school teachers. Unfortunately, to our knowledge, no study reports the needs and
feedback of in-service and pre-service teachers regarding the transfer of core CS
knowledge that they have been able to carry out in class with their pupils.

As a result, given state of the art, it seems necessary to offer training to
pre-service teachers on the core CS knowledge—ideally, spread out over time and
of at least three days. Concrete links with society should be emphasised in such
training to enable pre-service teachers to foresee a transfer of this knowledge and
a didactic transposition appropriate to the maturity of their pupils.

3 Structure and Content of the New Disciplinary Course

The time slots obtained for this course encompassed 6 half days over the course
of one semester, which is equivalent to Prieto et al.’s three full days [13].

3.1 Syllabus

The syllabus of the disciplinary course, according to our institution’s policy,
should be based on the high-school syllabus of the same topic. However, at the
time of course preparation, there was no mandatory CS course in high schools
yet;1 our own syllabus was then based on circulating unofficial drafts.

There is a general trend in CS education to move away from a coding-centric
approach [1,9]. We thus wanted to ensure that we were not only focusing on
1 Such a course is actually due to be introduced in 2022–2023.

3



programming and ended up with the following three main subfields: (a) data
representation; (b) algorithms and programming; (c) machines and networks.

As mentioned in the introduction, mandatory CS in schools, in the view of
our minister of education, should serve a “digital citizenship” goal rather than a
mainly technical goal. According to this point of view, while the basis of data
representation and programming should be taught, it is equally important that
the societal implications linked to the usage of technology in the general public
be exposed and discussed [11]. To embody this perspective in the new course, we
discussed societal issues linked to the technical topics in each of the 6 sessions
and made them an integral part of the syllabus.

We also strongly felt that we needed a common thread along the course. The
bigger part of our audience has no special appetency for technical matters: we
could not just place next to each other a series of themes deemed relevant by
us without a strong, visible link between them. We thus picked web search as a
common thread, and arranged the conceptual topics of the syllabus around the
exploration of what really happens at various stages of running a web search.

Here is the final six-session syllabus, formulated in terms of the common
thread and linked to societal issues:
1. Data representation. “Computers work with 1s and 0s. When you do a

web search, the search terms are also 1s and 0s—so are the results you get, be
them text or images. Let’s find out how we can represent such data with bits.”
⇒ Binary representation of positive integers; representation of text, basics of
bitmapped images. Societal issues: Energy consumption of storage systems
and large communication infrastructure in response to growing usage.

2. Computer architecture. “We now know how our web request will be repre-
sented. Let’s now look at how these 1s and 0s travel through the electronics
inside a computer and how that electronics can be build to process that infor-
mation.” ⇒ Basic logic gates; high-level view of components such as CPU,
storage devices, and sensors. Societal issues: History of CS and automated
machines; influence of war-time goals (deciphering, ballistic computations)
on the development of computers.

3. Network and cryptography. “After exiting our computer, our web search
goes through the internet to reach the search provider’s servers. How it is
relayed by the intermediaries involved? How can I prevent these relays from
reading what’s in my request?” ⇒ Packet switching, basic routing and idea of
protocol; examples of symmetric ciphers, common attacks, and principles of
asymmetric cryptography. Societal issues: Disparities in the world for internet
access; pros and cons of strong ciphers and end-to-end encryption.

4. Programming I. “Our request has reached the remote server. To be answered,
it is processed by the searched company’s software. What is software and how
do you instruct a machine what to do? Through programming.” ⇒ Using
Python’s turtle module: simple movement, simple loops, simple function
definitions, without or with one parameter. No variables at this point. Societal
issues: Open source/free software, licensing (not limited to software).

5. Programming II. “The previous examples have showed us how to give
instructions to a computer; this session will make more explicit the way data

4



is referenced and handled in programming languages through variables that
can represent values that are still unknown when the software is written.”
Same programming environment: variables, if statements and conditions
with variables, simple lists (definition and iteration). Societal issues: Data
collection, profiling, recommendation algorithms, and third-party cookies.

6. More algorithms and AI. “CS is more than web searches. Let’s examine
graphs, which allow us to model many problems, and a related algorithm,
which is used in our GPS but not only there. Finally, let’s talk about AI: what
it is, what it isn’t, and a little bit of how it works.” ⇒ Without programming:
concept of graph, tracing of Dijkstra’s algorithm, applications. AI: high-level
principles of a rule-based classification algorithm. Societal issues: Importance
of training data for AI systems and awareness of bias-reproducing systems.

There were many other topics (technical or societal) we had deemed worthy
of interest that did not end up making it into the syllabus for time constraints.
Many steps in the web-search-processing story are still missing. The goal of the
common thread is to arrange the selected topics in a tractable sequence rather
than provide a full explanation of the chosen phenomenon.

3.2 Operational Planning

The course ended up being given entirely remotely due to COVID-19. We prepared
4 to 6 videos of of between 5 and 15 minutes for each of our 6 sessions, for a total
never surpassing 60 minutes. Our aim was to keep the video time at a maximum
of 60% of what the actual lecture time would have been.

We made a creative use of the Label element in Moodle to structure the
subsections, link each of them with a short list of expected learning outcomes, and
added to each of them practical exercises, the solutions to which were available
to students and explained in details, sometimes with more videos.

Societal issues cannot readily be linked to practical exercises. In order not
to limit ourselves to videos on these issues, questions were asked at the end of
each videos, in a “food for thought” way—with no correct or incorrect answer.
Arguments serving these discussions were provided in the “solutions” part.

In addition to the material on the Moodle page, we opened for each session a
Zoom room for 120 minutes, creating several breakout rooms which corresponded
to the session’s subsections. This always included a room to discuss the open
questions related to the societal issues. Each breakout room was staffed with one
instructor and the students could thus freely navigate between them according
to the concepts they were stuck with or wanted to discuss.

As a last means of interactions, a traditional Moodle forum was made available
for public, asynchronous questions and answers about the course.

3.3 Evaluation

Evaluation was done during an open-book 90 minutes Moodle quiz comprising
28 multiple-choice (MC) questions (which were corrected automatically) and 4
open-text questions (which were corrected manually).

5



The MC questions were “rich” in the sense that they were not only text, but
embedded images and (with the help of HTML iframes) interactive logic diagram
or code editors. The open-text questions asked the students to describe, with
a few sentences of their own writing, their understanding of the societal issues
discussed in the course and short analysis of a small related example situation.
Typically, such topics cannot adequately be assessed with MC questions.

We insisted on the open-book policy, convinced that, especially in the field
of CS, any evaluation requiring students to learn certain things by heart was
assessing capabilities related to the lower levels of the cognitive domains of
Bloom’s taxonomy (Comprehension and Understanding), and we were trying as
much as possible to focus on the higher levels (more specifically, Application and
Analysis for technical topics, and Analysis and Evaluation for societal issues).

4 Data Collection & Methodology

To answer our research questions, we used data from the following sources:

– A survey given before the beginning of the new course, which contained
question about age, gender, previous education, and included a section meant
to capture their representation of CS and their declared a priori mastery of
the main subtopics of the course (see details below);

– A post-course survey, with the same questions about their representation of
CS and their declared a posteriori mastery of the same subtopics;

– Grades from the examination described above, given at the end of the course,
with a detailed split of the points among the same subtopics whose declared
mastery was asked about in the surveys;

– A survey given a year later to the same students, asking if they viewed what
they had learned in the new course as useful for the following didactics course
and for the classroom activities they had conducted in the meantime.

The grade records were anonymized and uniquely identified by some Moodle-
generated ID. The same ID was automatically filled out in the pre- and post-course
surveys, enabling us to automatically link the survey responses while keeping
them anonymous.

4.1 Common Pre- and Post-Course Survey Questions

To address RQ1, both pre- and post-course surveys included questions to depict
the students’ view of CS before and after the course. They were asked to rate
these statements on a Likert scale ranging from 1 (disagree completely) to 6
(agree completely): “To me, computer science...”2 [12]:

1. is mainly applied mathematics
2. does not really have permanent components and is constantly evolving
2 Students were also asked to answer an free-text question on how they would describe

CS. Size constraints do not allow the inclusion of the analysis of those results here.

6



3. changes rapidly but rests on stable notions
4. has theoretical foundations
5. is mainly about learning how to use office software
6. is primarily about practical knowledge rather than concepts and notions
7. is the major science of the 21st century

To address RQ2, students were also asked to rate their mastery of the following
subtopics on a scale ranging from 1 (no mastery) to 5 (excellent mastery):
1. binary data representation; 2. CPU and computer architecture; 3. cryptography;
4. programming; 5. algorithms and AI; and 6. computer networks.

The survey enabled us to observe how each student changed their view of
CS and how their declared mastery evolved. Moreover, we could determine the
correlation between the declared post-course mastery and the actual exam results
for first 5 subfields listed above (subfield 6 was made optional and was absent
from the final exam).

4.2 Year-After Survey

In the year after the disciplinary course, student have followed a didactics course
and have had the opportunity to conduct a CS-related activity in a classroom.
Since the new course was supposed to provide the foundations for the didactics
course, we were interested in asking students’ opinion through these two questions
to address RQ3 : (a) How useful did you find the disciplinary course for the activity
you conducted? (rated on a 7-point Likert scale), and (b) Retrospectively, how
adequate did you find the level of the disciplinary course? (rated on a 5-point
scale: way too hard/too hard/adequate/too easy/way too easy).

We were especially interested in the year-after (rather than the right-after)
opinion since it would be difficult for students to evaluate the adequacy of such
a course without practical experience with actual classroom activities.

5 Analysis & Discussion

357 students were registered for the course and obtained a grade. Out of them,
284 filled the pre-course survey; 130 filled the post-course survey (114 filled them
both); and 117 filled the year-after survey. The Demographics subsection thus
rests on the 284-sample dataset; the analysis covering pre/post comparisons and
the year-after opinion use the 114- and 117-sample datasets, respectively.

5.1 Demographics

About 65% of the respondents are between 18 and 22 years old; 22% are between
23 and 30; 8% between 31 and 40, and the rest 5% are older. 85% are female.

The highest degree of 85% of the respondents is a high-school degree. About
12% have a college degree; about 3% have another degree (professional or other).

87% of all students passed the exam on the first attempt.

7



60% 40% 20%

⇠ disagree agree ⇢

0% 20% 40% 60% 80% 100%

29%17%2% 33% 15% 4%preIs Mainly
Applied Math 31%23%4% 25% 12% 5%post

24%11%2% 24% 23% 17%preEvolves
Constantly 22%18%5% 26% 19% 8%post

17%8%1% 27% 35% 12%preHas Stable
Notions 17%5%3% 26% 34% 15%post

7%2% 20% 39% 33%preHas Theoretical
Foundations 9%2%1% 12% 46% 29%post

13%6%1% 27% 32% 21%preIs Mainly
Software Usage 22%8%5% 22% 28% 15%post

32%24%3% 25% 11% 6%preIs Mainly Prac-
tical Knowledge 29%18%5% 28% 14% 5%post

17%6%1% 19% 30% 27%preIs Major Science
of 21st Century 9%13%4% 15% 28% 32%post

Fig. 1. Shift of opinions on what CS is according to the students, following the
7 questions described in Section 4.1, rated on a 6-level Likert scale. Red bars
indicate (center-to-left) “somewhat disagree”, “disagree”, and “strongly disagree”;
green bars indicate (center-to-right) “somewhat agree”, “agree”, “strongly agree”.

5.2 Representation of Computer Science

We now analyze students’ views of CS through their compared (pre- and post-
course) opinion on the 6 assertions listed in Section 4.1, shown on Fig. 1.

Students are almost evenly split on whether CS is mainly applied mathematics.
After the course, they tend to reject this assertion more (even if the shift is on
the verge of being significant at the .05 threshold: Mann–Whitney’s U = 20568,
p = .0537). The diversity of the subtopics and the discussion of the societal issues
were meant to favor such a shift and a conceptual separation of math and CS.

Although CS is still viewed by the majority as constantly evolving with
no permanent components, there is a significant shift (U = 21749, p = .0029)
occurring. In hindsight, we should have phrased this question differently, as it
mixes two dimensions (having permanent components and evolving constantly,
both of which can be argued to be true) into a single statement.

More than 75% of respondents agree that CS has stable notions (this does
not change between pre and post). Even more agree that CS has theoretical
foundations. We were surprised to see more students disagreeing on this after the
course. Even though the difference is not statistically significant, we ideally would
have liked to see the opposite shift: we believe this is due to our very practical
approach which tried to include as little theory (and as little math) as possible.

8



1
2
3
4
5

1.6
70%

14%

7%

7%

1%

declared, pre

4.1

5%

17%

38%

40%

declared, post

4.3

2%

7%

60%

31%

assessed

1. Binary Data Representation

2.1

31%

38%

20%

10%

1%

declared, pre

3.0

2%

22%

48%

22%

5%

declared, post

4.2

5%

11%

37%

47%

assessed

2. CPU and Computer Architecture

1
2
3
4
5

1.3 81%

12%

4%

1%

1%

declared, pre

3.6

2%

10%

31%

43%

14%

declared, post

3.5

2%

19%

29%

33%

18%

assessed

3. Cryptography

1.5
71%

16%

9%

2%

1%

declared, pre

2.9

5%

35%

31%

25%

4%

declared, post

3.8

10%

18%

51%

20%

assessed

4. Programming

1
2
3
4
5

1.4
72%

17%

7%

4%

declared, pre

3.2

2%

19%

40%

35%

4%

declared, post

3.3

10%

15%

29%

24%

23%

assessed

5. Algorithms and AI

2.2

30%

33%

23%

12%

3%

declared, pre

3.3

2%

16%

40%

36%

5%

declared, post

6. Computer Networks

Fig. 2. Declared pre- and post-course mastery of CS subfields taken from surveys,
compared to the performance on the final exam.

We were pleased to see significantly more disagreement on CS being mainly
software usage (U = 21507, p = .0055), even though a majority still agrees. There
was no significant shift on the two remaining questions of our surveys.

5.3 Declared and Assessed Mastery Levels of Subtopics

The results shown on Fig. 2 show, for each of the 6 subfields, a distribution of
declared mastery on a scale ranging from 1 (no mastery) to 5 (excellent mastery).
Pre-course data is shown first (yellow), then post-course data (green), and last
(blue), we show the scores obtained by averaging over the grades of the relevant
questions in the final exam and rescaling to reach the same 1-to-5 range. Subtopic
6 was made optional and no exam question was asked on it. The vertical grey
bars show the mean of each distribution.

The declared pre-course level was almost the same for subtopics 1, 3, and
5, and the means of the declared post-course levels are very close to the final
grades. Some students slightly overestimated their understanding of binary data
representation and slightly underestimated that of algorithms of AI. On the two
subtopics 2 and 4, students significantly underestimated their understanding
with respect to our exam questions. These are the two topics where our course
exercises included synthesis questions—small logic circuits in an interactive tool
for subtopic 2 and short Python programs with turtle for subtopic 4. These
were experienced as difficult by students. On our final exam, these subtopics were

9



80% 60% 40% 20%

⇠ too hard too easy ⇢

0% 20% 40%

46%26%17% 3% 8%Level Adequation

Fig. 3. Perceived adequation of the level of the course a year later.

60% 40% 20%

⇠ not useful useful ⇢

0% 20% 40% 60% 80% 100%

18%9%11%11% 24% 15% 12%(all)Usefulness 117

20%11%16%20% 7% 15% 11%Programming 55

15%4%8% 58% 12% 4%Algorithms Unplugged 26

45% 18% 36%Cryptography 11

30%10%10% 30% 10% 10%Data Representation 10

Fig. 4. Perceived usefulness of the course, a year later, split according to con-
ducted classroom activity.

addressed with multiple-choice question, which definitely made them easier to
achieve than if they had also been synthesis questions.

5.4 Year-After Opinion

A year later, 43% of the students who expressed their opinion said the course
had been too hard, 11% too easy, and 46% adequate, as shown in Fig. 3. The
imbalance between the two extremes has since then made us reconsider the
inclusion of some more involved notions, especially in programming (Python’s
lists) and algorithms (some properties of graphs).

About half of the students found the disciplinary course had been useful
to them (Fig. 4, first row). We were nevertheless surprised that almost a third
said it had not been useful, so we split the analysis according to the type of
activity the students had conducted in the classroom (filtering out activity
types with fewer than 5 instances). The next rows in the same figure show the
significant differences between them. The negative ratings mostly come from
students who have conducted programming activities, while those having dealt
with cryptography-related activities had unanimously found the course useful.

The main difference between these two subtopics is how closely what we do
in the new course is related to what they can actually conduct as activity in the
classroom. The programming activities are quite different: the course uses Python,
but they will use robots or Scratch Jr in classrooms—which is quite different,
even though underlying concepts may coincide. For cryptography, we begin with
Caesar’s cipher and, although we also discuss more advanced polyalphabetic
ciphers and several attack types, they can directly conduct a classroom activity
based on Caesar’s cipher, making the link immediately clear.

While research shows that being correctly educated about the disciplinary
content is crucial for teachers, it also highlights the fact that it is not necessary

10



to go far beyond the level of corresponding knowledge that they teach in their
class. The more one goes beyond a minimal base of disciplinary knowledge as
taught at a given level, the less added value this disciplinary knowledge brings to
teaching [6]. But we also know from Bruner [3] that a knowledge of individual
concepts is not sufficient. There must be an understanding of the way concepts
are organized together, of the underlying principles that support them.

Let us be reminded that a subsequent mandatory didactics course exists to
precisely present classroom activities. We have no clear way of actually knowing
that the basics of programming they acquired in the new course did not make
them more effective programming teachers. But seeing how closeness to classroom
activities is beneficial to perceived usefulness has made us change the design of
future occurrences of the course so as to always start with a motivating example
very closely linked to an activity they will be able to conduct.

6 Conclusion

We have described the primary-teacher-education context in which we deemed
necessary to introduce a new introductory course to CS. We have outlined its
specificity and its syllabus, highlighting our common-theme approach and the
discussion of the broader societal issues. We explained the all-remote modalities
related to the COVID-19 situation.

We have analyzed data from pre- and post-course surveys, from the final exam,
and from a year-later survey, after the students had conducted CS activities
in actual classroom. Data shows that they view CS differently on a subset of
statements on which we asked them to express agreement; notably, that CS is
not about software usage and does have permanent components, although it
evolves constantly. We noted that our theory- and math-poor approach has not
reinforced much the impression that CS has theoretical foundations, although
the course was also meant to convey the idea that CS is science indeed.

Declared mastery and exam questions show that topics treated with exercises
involving creating programs or small logic circuit (where synthesis is needed)
reduce the perceived mastery compared to other topics like data representation
and cryptography (where exercises rather test understanding and analysis than
synthesis).

Finally, the year-after survey showed greatly different perceived usefulness
of the new course depending on the type of conducted classroom activity, even
though all such activities were conceptually linked to the course. Perceived
usefulness was maximal when the course not only conceptually coincided with
the conducted activity, but also directly treated (and expanded on) scenarios
that could form a direct basis for that activity.

These results have enabled us to make data-driven adjustment to the new
course so as to better highlight some fundamental aspects of CS as well as increase
the perceived usefulness of the course.

11



References

1. Astrachan, O., Briggs, A.: The CS principles project. ACM Inroads 3(2), 38–42
(2012)

2. Bell, T., Andreae, P., Robins, A.: A case study of the introduction of computer
science in nz schools. ACM Transactions on Computing Education (TOCE) 14(2),
1–31 (2014)

3. Bruner, J.S.: The process of education. Harvard university press (2009)
4. Chevallard, Y.: On didactic transposition theory: Some introductory notes. In:

Proceedings of the international symposium on selected domains of research and
development in mathematics education. pp. 51–62. Comenius University Bratislava,
Czechoslovakia (1989)

5. Computer Science Teachers Association, Code.org Advocacy Coalition: State of
computer science education (2018), https://code.org/files/2018_state_of_cs.pdf

6. Darling-Hammond, L.: Teacher quality and student achievement. Education policy
analysis archives 8, 1–1 (2000)

7. Dengel, A.: Opinions of CS teachers in secondary school education about CS in
primary school education. In: Proceedings of the 12th Workshop on Primary and
Secondary Computing Education. pp. 97–98 (2017)

8. El-Hamamsy, L., Chessel-Lazzarotto, F., Bruno, B., Roy, D., Cahlikova, T., Cheva-
lier, M., Parriaux, G., Pellet, J.P., Lanarès, J., Zufferey, J.D., et al.: A computer
science and robotics integration model for primary school: evaluation of a large-scale
in-service K–4 teacher-training program. Education and Information Technologies
26(3), 2445–2475 (2021)

9. Fincher, S.A., Robins, A.V.: The Cambridge handbook of computing education
research. Cambridge University Press (2019)

10. Funke, A., Geldreich, K., Hubwieser, P.: Primary school teachers’ opinions about
early computer science education. In: Proceedings of the 16th Koli Calling Interna-
tional Conference on Computing Education Research. pp. 135–139 (2016)

11. Paoletti, F.: Épistémologie et technologie de l’informatique. Revue de l’Enseignement
Public et Informatique (71), 175–182 (1993)

12. Parriaux, G., Pellet, J.P.: Computer science in the eyes of its teachers in French-
speaking Switzerland. In: Brodnik, A., Tort, F. (eds.) 9th International Conference
on Informatics in Schools: Situation, Evolution, and Perspectives. Springer (2016)

13. Prieto-Rodriguez, E., Berretta, R.: Digital technology teachers’ perceptions of
computer science: It is not all about programming. In: 2014 IEEE Frontiers in
Education Conference (FIE) Proceedings. pp. 1–5. IEEE (2014)

14. Repenning, A., Lamprou, A., Petralito, S., Basawapatna, A.: Making computer
science education mandatory: Exploring a demographic shift in switzerland. In: Pro-
ceedings of the 2019 ACM Conference on Innovation and Technology in Computer
Science Education. pp. 422–428 (2019)

15. Sentance, S., Csizmadia, A.: Computing in the curriculum: Challenges and strategies
from a teacher’s perspective. Education and Information Technologies 22(2), 469–
495 (2017)

16. Shin, S., Bae, Y.: Study on the implications about curriculum design through the
analysis of software education policy in estonia. Journal of The Korean Association
of Information Education 19(3), 361–372 (2015)

17. Vivian, R., Falkner, K.: A survey of australian teachers’ self-efficacy and assessment
approaches for the K–12 digital technologies curriculum. In: Proceedings of the
13th Workshop in Primary and Secondary Computing Education. pp. 1–10 (2018)

12

https://code.org/files/2018_state_of_cs.pdf

	Design and Analysis of a Disciplinary Computer Science Course for Pre-Service Primary Teachers

