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Abstract. We present an algorithm for causal structure discovery suited
in the presence of continuous variables. We test a version based on partial
correlation that is able to recover the structure of a recursive linear
equations model and compare it to the well-known PC algorithm on
large networks. PC is generally outperformed in run time and number of
structural errors.

1 Introduction

Detecting causation from observational data alone has long been a controversial
issue. It is not before the pioneering work of Pearl and Verma [1] and Spirtes
et al. [2] that causal discovery was formalized theoretically and linked with a
graphical representation: directed acyclic graphs (DAGs).

PC,? the reference causal discovery algorithm, is based on conditional inde-
pendence (CI) tests. While such a test can be implemented efficiently with dis-
crete variables, it is not generalizable to the continuous case straightforwardly.
With the assumption that variables are jointly distributed according to a multi-
variate Gaussian, we know that a test for zero partial correlation* is equivalent
to a CI test [3]. In this paper, we present an algorithm based on partial correla-
tion that is faster and makes fewer errors than PC on datasets with more than
a few hundred samples.

In section 2, we review principles of causal discovery, pose the problem, and
mention related work. We then present the algorithm in section 3 and analyze
its complexity. Experimental results are shown and discussed in section 4. We
conclude in section 5 and include proofs and definitions in appendix A.

3 “pC” stands for “Peter” and “Clark” after the inventors of the method [2].
4 Definition in appendix A.



2 Background & Problem Statement

The search for the true causal structure underlying some data set is of paramount
importance when the effect actions rather than predictions are to be returned.
By focusing on predictions only, a system cannot address problems where some
parts of the data distribution process is changed. Causality analysis is a mean to
address these nonstationary problems by computing the mechanism generating
the data and by assessing the effect of some changes in that mechanism. The
first step to a causal analysis is the definition of the causal structure represented
as a DAG. In general, this problem is impossible to solve with observational
data only. Causal structures can be retrieved only up to some equivalence class:
besides (undirected) adjacencies, only colliders, i.e., triples of variables where
one is a common effet of two causes, can be specified exactly.

There are mainly two classes of causal discovery algorithms: score-based and
constrained-based. In this paper, we are concerned with the second type only.
PC is a typical constraint-based algorithm. We present its high-level description,
also known as the IC algorithm [1]:

1. For each variable pair (X, Y) in the set of variables V, look for a set S xy such
that X and Y are conditionally independent given Sxy: (X 1LY |Sxy );®
add an edge between X and Y if no such set can be found;

2. For each pair (X,Y) with a common neighbor Z, turn the triple into a
V-structure X — Z «— Y if Z € Sxvy;

3. Propagate the arrow orientation to preserve acyclicity without introducing
new V-structures.

Because of the subset search in Step 1, PC and IC have an exponential time
complexity in the worst case.

Current causal discovery algorithms assume that the underlying causal struc-
ture is a Bayesian network (with discrete variables), i.e., that the dataset is
DAG-isomorphic [4]. Extensions have been developed for the case of continuous
variables when the underlying causal structure is a linear structural equation
model (SEM). In SEMs, we describe each variable x; = f;(pa;, u;) as a function
of its parents and a random disturbance term. When the corresponding graph
is acyclic, the SEM is said to be recursive.

In this paper, we focus on SEMs and on continuous variables, frequent in
econometrics, social sciences, and health care, for instance. Focusing on SEMs
rather than Bayesian networks avoids the computational difficulties of handling
continuous conditional probability distributions. But one of the main challenges
to solve is to find a convincing statistical test of CI for continuous variables. To
simplify our task, we solve the simpler case of a linear recursive SEM, where each
functional equation is of the form z; = (w;, pa,) + u;. Imposing a Gaussian dis-
tribution on the disturbance terms u; yields a multivariate Gaussian distribution
over V, and a partial correlation pxy.z will be zero if and only if (X 1LY |Z)

"Wehave (X LY |Z) <= P(X =z|Z=2)=PX =2z|Y =y, Z = 2).



holds. Thus, testing for zero partial correlation is a valid conditional indepen-
dence test for continuous variables in a linear recursive SEM with uncorrelated
Gaussian disturbance terms.

Related Work Partial correlation has been used extensively in econometrics and
social sciences in path analysis with relatively small models (e.g., [5]). In causal
discovery, it has only been used (as transformed by Fisher’s z, see [6,7]) as a
continuous replacement for CI tests designed for discrete variables and assuming
a small conditioning set size.

Causal graph construction, especially if considered as determination of the
Markov blanket of each variable, can be assimilated to a feature selection task for
each node. Other causal algorithms performing a search to retrieve the Markov
blanket of single variables include MMMB [8] and HITON_MB [9]. These papers
also discuss the link to feature selection. But to the best of our knowledge, none
of them has been extended and applied to fully-continuous datasets.

Other approaches to learning the structure of causal or Bayesian networks
with continuous variables without first discretizing them include using a CI
test from Margaritis [10]. This test, however, is very computationally expen-
sive, which limits its use even for medium-sized problems. Work has also been
done in score-based approaches for learning with continuous [11] and mixed [12]
variables and integrating expert knowledge in the form of priors, but they do
not provide a theoretical proof that the obtained graph is a perfect map of the
dataset.

3 Total Conditioning for Causal Discovery

Whereas PC removes edges from a full graph as CI is found, our Total Condi-
tioning (TC) method starts with an empty graph and adds edges between two
nodes when conditioning on all the others does not break any causal dependency.

1. For each pair (X,Y), add an edge X —Y if the partial correlation pxy .\ [x,v}
does not vanish. We obtain the moral graph of Gy, i.e., an undirected copy
of Gy where all parents of the colliders are pairwise linked;

2. Remove spurious links between parents of colliders introduced in Step 1 and
identify V-structures;

3. Propagate constraints to obtain maximally oriented graph (completed PDAG).

Partial correlations in Step 1 can be computed efficiently by inverting the corre-
lation matrix R. With R™! = (%), we have: DX X, V\{Xi,X,} = —rid [\/piipdd,
In terms of Gaussian Markov random fields (a special case of undirected
graphical models), Step 1 constructs the correct graph by adding edges where
the total partial correlation is significantly different from zero (see, e.g., [13]). In
the case of the DAG-isomorphic problems we handle, Step 1 builds the correct
structure up to moral graph equivalence: it will actually build the correct undi-
rected links and marry all parents. This means that every original V-structure
will be turned into a triangle pattern. Step 3 is common to several algorithms



constructing the network structure under CI constraints [1,2]. Step 2 is a local
search looking for orientation possibilities. To explain it, we need the following
definition.

Definition 1. In an undirected graph G = (V,E), let Tri(X —Y) (with X,Y €
V and (X,Y) € E) be the set of vertices forming a triangle with X and Y.
Suppose that G is the moral graph of the DAG representing the causal structure
of some DAG-isomorphic dataset. A set of vertices Z C Tri(X —Y) then has
the Collider Set property for the pair (X,Y) if it is the largest set that fulfills

HSXyCV\{X7Y}\Z(XJ.|_Y|Sxy) (1)
and VZlGZ(X_,M_Y|SnyZZ) (2)

Step 2 looks at each edge that is part of some triangle and determines if it is
spurious due to a V-structure effect. This is exactly the case when two variables
X,Y in a triangle X,Y, Z can be made conditionally independent by a set that
does not contain Z. A search is then performed for each of those edges to de-
termine a set Z C Tri(X — Y') that has the Collider Set property, using a small
search space for Sxy and Z as allowed by the result of Step 1. If this search is
successful, the edge X — Y is removed and the detected V-structures properly
oriented for each collider. Practically, the search for Sxy can be restricted to a
subset of the union of the Markov blankets for X and Y, and the search for Z is
restricted by definition to Tri(X —Y'), which make both tasks tractable, unless
the graph has a high connectedness.

Algorithm 1 The Total Conditioning algorithm

Input: D :p x n dataset with p n-dimensional data points
Output: G : maximally oriented partially directed acyclic graph

G «— empty graph with n nodes
for each unordered pair X,Y do
if pxy.v\{x,v} does not vanish then add link Y — X to G
end for
for each edge X — Y part of a fully-connected triangle do
if 3Z C Tri(X —Y) that satisfies the Collider Set property then
remove link X —Y from G
for each Z; € Z do orient edges as X — Z; «— Y
end if
: end for
: perform constraint propagation on G to obtain completed PDAG
: return G

—= o=
N = O ©

Complezity Analysis Step 1 has a complexity of O(n?), which comes from the
matrix inversion needed to compute the partial correlations. Step 2 has a com-
plexity O(n?2%), where o = maxx,y [Tri(X — Y)| — 1. Step 3 is O(n?). The



overall complexity is then O(n3 + n22%), depending on the value of o as de-
termined by the structure of the graph to be recovered. In the worst case of a
fully-connected graph, it is, like PC, exponential in the number of variables.

After removal of the spurious links and the usual constraint propagation [1, 2],
the returned graph is the maximally-oriented PDAG of the Markov equivalence
class of the generating DAG Gj.

In the appendix, we prove the correctness of TC; i.e., we show that in the
large-sample limit and with reliable statistical tests, TC converges to the actual
perfect map of the dataset to be analyzed, up to its equivalence class.

Significance Tests A particularly delicate point in this algorithm is the statistical
test deciding whether a partial correlation is significantly different from zero. In
a network of n nodes, Step 1 performs n(n — 1)/2 tests for determining the
undirected skeleton. On average, we will then falsely reject the null hypothesis
p = 0 about an(n — 1)/2 times, and thus include as many wrong edges in the
graph. We then set the significance level for the individual tests to be inversely
proportional to n(n — 1)/2 to avoid this problem, without noticing an increase
in the Type II error rate experimentally. The PC algorithm does not suffer from
this issue because of the detailed way of repeatedly testing for edge existence
with increasing conditioning set cardinality.

In practice, we replaced the more traditional Fisher approximate z-transform
of the sample correlation by ¢-tests on the beta weights of the corresponding
linear regression equations, whose distributions are known to be Gaussian with
zero mean under the null hypothesis p = 0 (see, e.g., [14], p. 243).

4 Experimental Results

The performance of the TC algorithm was evaluated against the PC algorithm
[2] where CI tests were replaced by zero partial correlation tests. We were un-
able to compare it to newer algorithms like SCA [15] or MMHC [16] because
generalizing them to handle continuous variables require techniques that are too
computationally expensive. We used the following networks (from the Bayes net
repository):

— Alarm, 37 nodes, 46 arcs, 4 undirected in the PDAG of the equivalence
class. It was originally designed to help interpret monitoring data to alert
anesthesiologists to various situations in the operating room.

— Hailfinder, 56 nodes, 66 arcs, 17 undirected in its PDAG. It is a normative
system that forecasts severe summer hail in northeastern Colorado.

— A subset of Diabetes, with 104 nodes, 149 arcs, 8 undirected in its PDAG,
which was designed as a preliminary model for insulin dose adjustment.

The graphs were used as a structure for a linear SEM. The parentless vari-
ables were sampled as Gaussians with zero mean and unit standard deviation;
the other variables were defined as a linear combination of their parents with co-
efficient randomly distributed uniformly between 0.1 and 0.9, similarly to what



was done in [6]. The disturbance terms were also normally distributed. We used
the implementation of PC proposed in the BNT Structure Learning Matlab
package [17], where we set the statistical significance of the tests to aw = 0.05.
The implementation of TC was also done in Matlab; all experiments were run
on a 2 GHz machine.

Fig. 1 (a) shows the training errors for PC and TC against the number of
samples for Alarm. For each sample size, 9 datasets were drawn from the model;
the error bars picture the standard deviation over these 9 runs. Starting at
about 150 samples, TC outperforms PC. It introduces at most one unnecessary
arc and misses between 0 and 3. On average, TC was about 20 times faster than
the implementation of PC we used, although the factor tended to decrease with
larger sample sizes; see Fig. 1 (b).

The results for Hailfinder are shown in Fig. 2. The results for PC are sparser
than for TC, because of its long run times. In order to speed it up, we set the
maximum node fan-in parameter to 6, so that PC would not attempt to conduct
CI tests with conditioning sets larger than 6. For large datasets, we could run
PC only once, so that we have little information on the variance of its results
for this network, but even if we average the five last PC results for between 550
and 10000 samples, TC does better for each of its runs on this range. PC still
beats TC on sample sizes smaller than 200. We also see on Fig. 2 (b) how the
fan-in parameter imposed an upper bound on the run times of PC.

Fig. 3 shows errors and run times for Diabetes (note that the sample size
starts from 200, because in the case where we have fewer samples than the num-
ber of variables, TC would have to inverse a matrix that does not have full rank).
Again, PC does better at first, and starting at 500 samples, it is outperformed
in accuracy. The difference of the number of errors stabilizes around 5 or 6. Our
run times are still significantly shorter.

Finally, Fig. 4 shows the results of an experiment where we took the first n
nodes of Diabetes for a fixed sample size of 1000 in order to show the response
of the algorithms to an increasing number of variables in networks of similar
structure. Results show that PC makes 1 to 2 mistakes fewer on the smaller
networks but is outperformed for n > 50 on this particular instance. Although
the run times of PC are still significantly higher, rescaling the plots shows that
the increase of n increases the run times of both algorithms by a very similar
factor for all tested graph sizes.

Discussion TC consistently beats PC when the sample size gets larger, and does
so in a small fraction of the time needed by PC. In particular, PC is slowed down
by nodes with a high degree, whereas T'C handles them without the exponential
time complexity growth if they are not part of triangles, as in Hailfinder. In
general, TC resolves all CI relations (up to married parents) in O(n3) in Step
1, whereas all PC can do in O(n?) is resolve CI relations with conditioning sets
of cardinality 1. It is then reasonable to expect TC to scale better than PC on
sparse networks where nodes have a small number of parents.

PC could not be beaten on small sample sizes. It is yet an unsolved challenge
for TC to handle problems where the number of variables exceeds the number of
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Fig. 4. Diabetes: (a) structural errors and (b) run times as a function of n

samples, as in gene expression networks, thus leading to an attempt at inverting
a matrix that does not have full rank. Regularizing the covariance matrix might
help make TC more robust in this case. PC and TC are complementary in the
sense that PC is preferably used with smaller sample sizes, and TC can take
over more accurately with larger datasets.

5 Conclusion

Causal discovery with continuous variables is tractable with the multivariate
Gaussian assumption and partial correlation: we showed an algorithm based on
it to recover the exact structure in the large sample limit. The algorithm first
checks for each pair of variables if their association can be accounted for by
the intermediate of other variables, and if not, links them, thus determining the
Markov blanket of each node. A second pass performs a local search to detect
the V-structure and orient the graph correctly.

The proposed algorithm outperforms or equals the reference PC algorithm
in accuracy (except for very small sample sizes) in a fraction of its run time.
In the future, we intend to investigate further the behavior of the algorithm
and improve it in these conditions. We will also work on generalizing partial
correlation and the underlying linear regression to the nonlinear case.

A Appendix: Correctness Proof

For all proofs, we assume the given dataset D is DAG-isomorphic.

Definition 2. Partial correlation between variables X andY given a set of vari-
ables Z is the correlation of the residuals Rx and Ry resulting from the linear
regression of X on Z and of Y on Z, respectively.



Definition 3. In an DAG G, two nodes X, Y are d-separated by Z C V \
{X,Y}, written (X Y | Z), if every path from X to'Y is blocked by Z. A
path is blocked if at least one diverging or serially connected node in in Z or if
at least one converging node and all its descendants are not in Z.

If X and Y are not d-separated by Z, they are d-connected: (X <Y |Z).
This is generalized to sets X, Y: (X Y | Z) holds if pairwise separation holds
foralli,j: (X, 4 Y; |Z).

Lemma 1. In a DAG G, any (undirected) path m of length ¢(w) > 2 can be
blocked by conditioning on any two consecutive nodes in .

Proof. Tt follows from Def. 3 that a path 7 is blocked when either at least one
collider (or one of its descendants) is not in S, or when at least one non-collider
is in S. It therefore suffices to show that conditioning on two consecutive nodes
always includes a non-collider. This is the case because two consecutive colliders

would require bidirected arrows, which is a structural impossibility with simple
DAGs. a

Lemma 2. In a DAG G, two nodes X,Y are d-connected given all other nodes
S =V\{X,Y} if and only if any of the following conditions holds:

(i) There is an arc from X toY or fromY to X (i.e., X =Y or X « Y);
(i) X andY have a common child Z (i.e., X — Z <Y ).

Proof. We prove this by first proving an implication and then its converse.

(<) If (i) holds, then X and Y cannot be d-separated by any set. If (i)
holds, then Z is included in the conditioning set and d-connects X and Y by
Def. 3.

(=) X and Y are d-connected given a certain conditioning set when at
least one path remains open. Using the conditioning set S, paths of length > 2
are blocked by Lemma 1 since S contains all nodes on those paths. Paths of
length 2 contain a mediating variable Z between X and Z; by Def. 3, S blocks
them unless Z is a common child of X and Y. Paths of length 1 cannot be
blocked by any conditioning set. So the two possible cases where X and Y will
be d-connected are () or (7). O

Corollary 1. Two variables X,Y are dependent given all other variables S =
VA\{X,Y?} if and only if any of the following conditions holds:

(i) X causesY orY causes X;
(i) X andY have a common effect Z.

Proof. Tt follows directly from Lemma 2 due to the DAG-isomorphic structure,
which ensures that there exists a DAG where CI and d-separation map one-
to-one. Lemma 2 can then be reread in terms of CI and causation instead of
d-separation and arcs. a

Lemma 3. The subset Z that has the Collider Set property for the pair (X,Y)
1s the set of all direct common effects of X and Y and exists if and only if X is
neither a direct cause nor a direct effect of Y.



Proof. The fact that Z exists if and only if X is neither a direct cause nor
a direct effect of Y is a direct consequence of (1), which states that X and
Y can be made conditionally independent. This is in contradiction with direct
causation. We now assuming that some Sxy and Z have been found.
(=) By (1) and (2), we know that each Z; opens a dependence path between
X and Y (which are independent given Sxy ) by conditioning on Sxy U Z;. By
Def. 3, conditioning on Z; opens a path if Z; is either a colliding node or one of
its descendants. As, by definition, Z C Tri(X —Y), we are in the first case. We
conclude that Z; is a direct effect of both X and Y.
(«<=) Note that (1) and (2) together are implied in presence of a V-structure
X — Z; < Y. Thus, a direct effect is compatible with the conditions. The fact
that Z captures all direct effects follows from the maximization of its cardinality.
O

Theorem 1. If the variables are jointly distributed according to a multivariate
Gaussian, TC returns the PDAG of the Markov equivalence class of the DAG
representing the causal structure of the data-generating process.

Proof. An edge is added in Step 1 between X and Y if we find that pxy v\ (x,v} #
0. We conclude (X LY | V\{X,Y}), owing to the multivariate Gaussian dis-
tribution. Corollary 1 says that this implies that X causes Y or Y causes X,
or that they share a common child. Therefore, each V-structure is turned into
a triangle by Step 1. Step 2 then examines each link X — Y part of a triangle,
and by Lemma 3, we know that if the search for a set Z that has the Collider
Set property succeeds, there must be no link between X and Y. We know by
the same lemma that this set includes all colliders for the pair (X,Y), so that
all V-structures are correctly identified. Step 3 is the same as in the IC or PC
algorithms; see Pearl and Verma [1, 2]. O
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