Logo du dépôt
  • Français
  • English
  • Deutsch
Se connecter
  1. Accueil
  2. CRIS
  3. Publication
  4. Investigating the Dimensionality of Early Numeracy Using the Bifactor Exploratory Structural Equation Modeling Framework
 
Investigating the Dimensionality of Early Numeracy Using the Bifactor Exploratory Structural Equation Modeling Framework
Auteur(s)
Dierendonck, Christophe  
de Chambrier, Anne-Françoise  
Fagnant, Annick  
Luxembourger, Christophe  
Tinnes-Vigne, Mélanie  
Poncelet, Débora  
Type
Article dans une revue scientifique
Date de publication
2021
Langue de la référence
Anglais
Entité HEP
Laboratoire sur l’accrochage scolaire et les alliances éducatives (LASALÉ)  
UER Pédagogie spécialisée (PS)  
Unité(s) / centre(s) de recherche hors HEP
Université du Luxembourg
Université de Liège
Université de Lorraine
Résumé
The few studies that have analyzed the factorial structure of early number skills have mainly used confirmatory factor analysis (CFA) and have yielded inconsistent results, since early numeracy is considered to be unidimensional, multidimensional or even underpinned by a general factor. Recently, the bifactor exploratory structural equation modeling (bifactor-ESEM)—which has been proposed as a way to overcome the shortcomings of both the CFA and the exploratory structural equation modeling (ESEM)—proved to be valuable to account for the multidimensionality and the hierarchical nature of several psychological constructs. The present study is the first to investigate the dimensionality of early number skills measurement through the application of the bifactor-ESEM framework. Using data from 644 prekindergarten and kindergarten children (4 to 6 years old), several competing models were contrasted: the one-factor CFA model; the independent cluster model (ICM-CFA); the exploratory structural equation modeling (ESEM); and their bifactor counterpart (bifactor-CFA and bifactor-ESEM, respectively). Results indicated acceptable fit indexes for the one-factor CFA and the ICM-CFA models and excellent fit for the others. Among these, the bifactor-ESEM with one general factor and three specific factors (Counting, Relations, Arithmetic) not only showed the best model fit, but also the best coherent factor loadings structure and full measurement invariance across gender. The bifactor-ESEM appears relevant to help disentangle and account for general and specific factors of early numerical ability. While early numerical ability appears to be mainly underpinned by a general factor whose exact nature still has to be determined, this study highlights that specific latent dimensions with substantive value also exist. Identifying these specific facets is important in order to increase quality of early numerical ability measurement, predictive validity, and for practical implications.
Titre du périodique
Frontiers in Psychology  
Mention d’édition
Frontiers Research Foundation
Pays d'édition
Suisse
DOI
10.3389/fpsyg.2021.680124
EISSN
1664-1078
Peer Reviewed
Volume / Tome
12
Pagination
12680124
Handle
http://hdl.handle.net/20.500.12162/5207
Digital Only
Fichier(s)
En cours de chargement...
Vignette d'image
Nom

Dierendonck et al._2021.pdf

Taille

520.17 KB

Format

Adobe PDF

Checksum (MD5)

3cfe1d6648c0f463fae3ef618f82ebd7

logo

À propos

Le dépôt ORFEE Mentions légales Prot. des données Envoyer un commentaire

Contact

Haute école pédagogique VaudAvenue de Cour 331014 Lausanne - Switzerland

Réseaux sociaux

logo-canton